Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces
نویسندگان
چکیده
The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.
منابع مشابه
Stratified communities of active Archaea in deep marine subsurface sediments.
Archaeal 16S rRNA was extracted from samples of deep marine subsurface sediments from Peru Margin site 1227, Ocean Drilling Program leg 201. The amounts of archaeal 16S rRNA in each extract were quantified by serial dilution and reverse transcription (RT)-PCR. The results indicated a 1,000-fold variation in rRNA content with depth in the sediment, with the highest concentrations found near the ...
متن کاملAncient DNA complements microfossil record in deep-sea subsurface sediments.
Deep-sea subsurface sediments are the most important archives of marine biodiversity. Until now, these archives were studied mainly using the microfossil record, disregarding large amounts of DNA accumulated on the deep-sea floor. Accessing ancient DNA (aDNA) molecules preserved down-core would offer unique insights into the history of marine biodiversity, including both fossilized and non-foss...
متن کاملMetagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids
The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generate...
متن کاملMicrobial provinces in the subseafloor.
The rocks and sediments of the oceanic subsurface represent a diverse mosaic of environments potentially inhabited by microorganisms. Understanding microbial ecosystems in subseafloor environments confounds standard ecological descriptions in part because we have difficulty elucidating and describing the scale of relevant processes. Habitat characteristics impact microbial activities and growth...
متن کاملFungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy
The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been det...
متن کامل